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that the optimal body has, close to the stagnation point, a conical shape with apexangle 
of 120’. 

We note that the terms discarded in Eqs. (4.6) am of the order p2R and, therefore, 
in satisfying the inequality p*R g-1 ( p3R < 1 in the axially symmetric case) we 
can, with a high degree of accuracy, assume the flow to be Stokes flow. Therefore, in 
the plane -parallel case, and also in the axially symmetric case, the magnitude of the 
angle 8, depends neither on the Reynolds number nor on whether the singular point is 

at the front or at the back. 

In conclusion, the author thanks F. L. Chernous’ko for his statement of the problem and 
N. V. Banichuk for useful discussions. 
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We consider the stationary convective diffusion problem (heat conductivity prob- 
lem) which occurs in the flow of a fluid with a shear velocity profile above an 
infinite plate. On the plate we assume discontinuous boundary conditions of zero 

flow, zero concentration type. This problem is solved by use of the Wiener-Hopf 
method with longitudinal diffusion taken into account. We obtain the exact solu- 

tion in the form of a complex integral and we determine an asymptotic expan- 
sion for the density of the flow on the plate close to and far from a discontinuity 

point in the boundary conditions. We show that close to this point the diff~ion 
boundary layer ap~o~mation (DBLA) is unsuitable. We determine the character 
of the singularity in the flow density at the discontinuity point and we make cor- 

rections to the DBLA. 

1. Statement of the problem rad ths Wiener-Hopf method, The 

mathematical statement of our problem is the following: 

2vyg=g+$$, o<r<m Y>% IV>0 

~(5,O) - 0, x<o; C(r,O)=O, s>o 

(1.1) 

(1.2) 

C(x,y)-+1, x+-m or y-+oa 

We seek a bounded solution of this problem, All variables are assumed to be dimensionless. 
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The behavior of the solution as 2 -+ - co makes a direct application of the Four- 

ier transformation difficult. To avoid this difficulty we consider the more general equa- 

tion 
(1.3) 

The usefulness of this generalization will become clear as we proceed. We introduce 

the new dependent variable 
‘P (5, y) = e-= fl - c (X, y)l (1.4) 

We can obtain the following estimate for the solution of Eq. (1.3) with the boundary con- 

ditions (1.2) : 
1 - C (z, y) < Aezvx, z -.+ - 00 (1.5) 

This estimate guarantees existence of the Fourier transformation (in the classical sense) 
for the function (0 (CC, y). A quick derivation of this estimate follows from Eq, (1.3) 

by setting V = 0 and discarding, as z -+ --=o , the term d2C I I??.$‘. It is clear that 

increasing I/’ only strengthens the inequailty (1.5). On the other hand, we shall solve 

the problem (1.3) with V = 0 exactly (see Eq. (2.9)) and thereby confirm the esti- 
mate (1.5) directly. Thus, 

(0 (3, y) .< 
i 

(1.6) 

To determine (p (E, y) we solve the problem 

$J -I- $ - l/l” -+- 2Vq] q? .= 2vy 2 

f$ (x,0) = 0, z<o; cp(I, 0) f!+=, x>o 

(1.7) 

For the solution of problem (1.7) we employ the complex Fourier transformation 
+m 

The estimate (1.6) ensures the analyticity of @ (a, y) in the strip -U<Z <v .The 

form of the inverse transformation is 
is+CC 

cp (G Y) = 
-&. s 

e+4) (a, y) da, - V < t < v (I. 3) 
IT---m 

For ci, (a, y) we obtain the following equation: 

d2@/dy2 + 12iVy (a -t iu) - a” - v21 cf, = 0 

The solution of this equation, a decreasing function for y -+ $00 may be expressed 

in terms of the Airy function 
Q, (CL, y) =>A (a)Ai [h (y)l (1.9) 

ia 
Ai(.s) cos 

s ( 
.sz+Y&s~)c&, 

0 

/&(Y)~elp(- $i) 2~~(~~~~~~~~~-~2 

The function A (CC) is, for the present, arbitrary. For the Airy function we employ the 
normalization used in [l]. We assume that -n < arg a < x, and that the branches 
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of the functions (a f iv)’ are fixed by the condition (CC f iv>‘-+ of as o --+ + 00 
in the strip - 2) < 7 < U. We make cuts along the intervals (iv, ioo) and (- ico, 
-iv) of the imaginary axis. 

In the sequel we employ the following properties of the Airy function Cl, 21. 

1. The functions Ai (z) and Ai’ (z) = dAi (z) / dz are entire functions, all 
of whose zeros in the z-plane are simple and lie on the negative real semi-axis. 

2. The following asymptotic expansions are valid : 

-x<argz<n (1.10) 

It can be verified that with the choice of branches indicated above, Q, (a, Y) -+ 0 
for y + +oo and --2, < 2 < u. 

We use the Wiener-Hopf method [3] to determine A (a). We introduce the notation 
02 0 

@+ (a, 0) zzz -&-s &“a) (x,0) ax, a_. (a, 0) = -&- 1 da-y (Z, 0) 0% (1.11) 
x 

0 --ar 

m 0 

@+‘(a, 0) = - a $2 o a &ax $$ (x,0) do, @_’ (a, 0) = & 5 &ax 2 (x,0) dx 
-00 

The assumption concerning the existence of the integral CD,’ (a, 0) corresponds to 
the assumption that the material flow density of the plate, namely, j (s) 5 dC (5, 

0) / aY , has an integrable singularity as IC --f + 0. It follows from this that d),’ (a, 
0)+-O as a-+oo. Infact [4],if &p(~,0)/8y-_z~, x--t + 0 and -1 < 

A < O’ ‘“g+’ (a, 0) _ A (Zn)-‘il I? (h C 1) exp [$ (h + I)] U+-r, ti-?oo (1.12) 

(Con~ming the assumption made on the nature of the sing~ari~ of j (s) as 2 -+ + 00 
see the note at the end of the paper). 

Of the four functions (1.11) the functions @_(a, 0) and @,’ (a, 0) are unknown. 
Taking into account the fact that 

@+ (01, 0) + a_. (a, 0) = A (a) Ai fh (0)l 

@,I (a, 0) + f-D_’ (a, 0) = A(a)& Ai [h(O)] 

and eliminating A (cc) from these equations, we obtain the Wiener-Hopf problem 

a+’ (a, 0) + @_’ (a, 0) = f (4 1% (%O) + @_ (a, 0)l 

f(a) = exp ( - $f (2V)“/a (a + ivy/a $$, zdz(0) = 
exp (&c/3) (us -t_ ~2) 

(2V) % (a + 4 *I* 

We assume that the problem of factorizing the function f (a)has been solved,i. e.we assume 
that a representation f (a) = f+ (a) f_ (a) has been found such that f+ (CL)’ is analytic 

and has no zeros for r > -v, while f_ (u) is analytic and has no zeros for z < 2). 

Then, following the Wiener-Hopf method p], taking into accouut the fact that @_’ (a, 

0) = 0 and @+’ (a, 0) -to fora+ oo,wefind 
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The functions G, (cz) and G_ (a) are analytic for ‘c > --o and r < 2, , respectively. 
and are determined from the condition 

G (a) =I f_ (a)@+ (a, 0) = G, (a) + G_ (a) (1.13) 

which yields the result [3] 
oO+ic, m+iy 

G,(a)=& $ zdt, C_(u) = - & 5 E dt (1.14) 
-to+ie, -m+ic, 

(--u<clcz<c2<4 

Taking note of the relation (1.13). we have 

The quantity dcp (z, 0) / &I, appearing in the expression for j (2) is determined di- 
rect!y in terms of CD,+’ (a, 0) it+C9 

-$$-@, 0) = +$ I j @;(a, @e-i= da (1.17) 
-P--m 

Thus, solution of the problem reduces to factorizing the fiction f (u). 

2, Plctorf rrtfoe. We consider now the analytic properties of the function f (a), 

Using the first of the relations (1. lo), we find 

f(o) = - I/o’ + u2 [l -I- 1/42-J/z + O(Z-~)], Im (a + iu)> 0 CL11 

We note that f(a) = -)ia” + v2 

(3.7) for V 2 0 

corresponds to the exact solution of the problem 

; this is to be expected, since if V 3 0 then z -+ 00. As has al- 
ready been mentioned, all the zeros of the functions Ai (z) and Ai’ (z) in the z-plane 

lie on the negative real semi-axis, Let -rk (r.~ > 0). k = 1, 2,... be the zeros 

of Ai (z), while -rk’ (rk' > 0), k = 0, 1, 2, . . _ be the zeros of Ai’ (2). We con- 
sider now how the indexing of these zeros differs. 

We introduce the q~ntities tk and tk8 

$2 ‘-32 
v +“* ?q = 

v 
3x 
2 tkft t;s- 

From the expressions (1.10) we easily obtain the asymptotic expansions 

Taking into account the manner in which the branches were chosen, we find that the 
poles akof the function f (a) which coincide with the zeros of Ai IZ (a)], are simple. 
They lie on the positive imag~na~ axis in the a-plane and are determined from the 
condition 
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where sk is the positive root of the equation 

Tk Czz (ZV)% (v)-“‘: s (s $ 3% 

The zeros ~~k’of the function f (a) (also simple) lie on this same line 

ak’ = iv (sk’ + I), rk’ = (2V)Q (v)-% (s’ + 21% S’ 

In the case of greatest interest V~VV-l > 1 we have 

ak = irp I/Z = i 1/3nTrt,, ok.’ = i 1/zj$’ (2.2) 

The function f (a) has no other singularities in the upper half-plane. In the lower balf- 
planet fez) hasa cut (-ioo,---iv) alongthe negativeimaginaryaxis and has no zeros and 

poles. We introduce the function 

6 (a) = -f (a) / fm = --z+ Ai’ (z) / Ai (z) 

Its expansions for large and small z (large and small $I are the following : 

g (a) = 1 $ l/&+e -1.. 0 (z-“) 

(2.3) 

(2.4) 

H _ _ Aij W) _ = 3’,y‘ (‘y3) 

AI (0) 1’ (l/3) 

Noting the properties of f (a), we find that g (QZ) is analytic and has no zeros in the 

strip -u < ‘G < v and that g (a) --+ 1 as a --P 00 in this strip. Consequently, the func- 

tion g (CL) satisfies Theorem C of @J and may be factored in the standard way [3] 

g (01) = g+ (ak- (a), g+ (a) = exp h+ (a), g_ (a> = exp h_ (a) c2+ 5, 

ic’+m 

*dE, 
w+m 

(2.6) 

In Eqs. (2.6) the branch of the logarithm is chosen in such a way that fn g (5) -+ 0 as 
E -+ 00. The factorization of f (a) is now made without difficulty and we find 

f+ (a) = r t/a AZ iv g+ (01) 

In Eqs. (1.14) the integral for G, (a) is readily calculated upon noting that 

@,,(a, 0) = -j& * 

the result is found to be 
G, (a) = -A&- t- (-- t8) a -+ i?> 

This enables us to express ct, (a, 0) and @+’ (a, 0) directly in terms of g, (a) and 

g- (a). Thus 
(2.7) 
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@(r&O) =-J-- (- Ziu) ‘12 g_ (- iv) 

v’z (3 - ivt”‘(? + iv) g-. (Iy) (2.8) 

The expression (-2iv)‘iz is here taken on the right side of the cut. The presence of 

this factor shows that in the passage to the limit u -+ 0, we must proceed with caution. 
We note that the relations (1.8),(1.16), (2. S), (2,6) and (2.8) give a complete formal 

solution of the problem (1.7) , 

In the case V = 0, as Eqs, (2.I), (2.4) show.it is necessary to set g, (a) = 
g_ (a) = 1 in the relations (2.7) and (2.8). Then, using these relations and the corre- 
sponding inversion formulas, we obtain 

qq+,o)=-&eT(+, -24, x<o,. v=o 

$(& 0) == - j/z$+V, r>o, V=O 

If -22x> 1 (X < 0), then 

q+,O)=$- JE erx ( - 27x)- iq~+o(“&)] 

which confirms the estimate (1.6). 

In the sequel, we assume that vm / v > 1 and, in the explicit form of v , we shall 

retain only terms containing singularities as u _+ 0. 

3, Calculntfon of the flaw density, We show that in the equations (2.6) 
the integral for h_ (a) can be evaluated exactly. The important factor is that function 

Ai’ (G) / Ai (z) appearing in g (a) has no branches in the upper half-plane 01 , and this 
determines the choice of h_ (a) for the computation. differentiating h_ (a) with respect 
to d and integrating once by parts [5], we find 

dh_ 1 
ic”_tm 

da= -- 
2ni s 

id’-42 

It is immediately evident that in the last integral the integrand function has no branches 

in the upper half-plane. Closing the path of integration in the upper half-plane and fol- 
lowing the type of reasoning used in the proof of Jordan’s lemma [6], we obtain 

dh_ 1 
-= 

dcz 2 (‘:?I - @I (3.1) 

Here czk and M. k’ are given by the relations (2.2). A direct verification shows that the 
series (3,l) is convergent. Integrating the equation (3. l), we find 

h_(a) = +l(a-i*)+ln(a-a,,‘) + (3.2) 
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2 [ln(a-aa,‘)-In(a-a,)-~6,] +c 
k=l 

The constants 6, must be chosen in such a way that the series (3.2) converges (c is an 

arbitrary constant). It is not difficult to show that convergence isensured for hk x(&)-J. 
Another choice of skis equivalent to multiplication by a constant. 

Taking Eq. (2.5) into account, we obtain an expression for g_ (a) in the form of an 
infinite product, namely, 

g- (a) = eXp h_ (a) = ec (a - iv)-*!* (cc - a,‘) II 
(3.3) 

The relations (1.8), (1.16). (2.8) and (3.3) yield a complete solution of the problem 
(1. l), (1.2) in the form of a single complex integral. 

In what follows we shall need expansions of R-i (p) for 1 p I< 1 and 1 fj I> 1 

In II-l (p) = In II-l (0) + yIP + rJ.S2 + . . . -+ r,p” + . . . (3.4) 

n-l(p) = eY14 pl/* E 1 1nP 
----tq+,! 36~2 b= 

(3.5) 

The constants Y,% and d are defined by the relations 

Here Y is Euler’s constant and 5 (z) is the Riemann g-function. We note that obtain- 

ing the expansion (3.5) is not an entirely trivial problem. 

Noting that g, (a) = g (a) / g_ (a), we obtain 

With the aid of the relations (3.5) and (2.4) we can obtain an asymptotic expansion for 
the factor accompanying the exponential term in the integral (3.6) for 1 a [ > 1. 
Integrating this expansion termwise, we find (for 2, -+ 0) 

We have thus obtained the first three terms of the expansion of i (x) for ~7: -+ +- 0. 
In order to obtain an expansion for large X, we deform the contour of integration in 

(3.6) in such a way as to envelope the cut in the lower half-plane from both sides. We 
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Using Watson’s lemma in [7] and the expansion (3.4),we obtain finally an expression for 
the flow density 

j (5) = - 2 (x, 0) = ‘2L~~~~8~” &la 1 + $ i [ 
u +$$$+ (3.8) 

4dr 1 -- 
Y u2 

The constants A, 4, CE,, d, are determined by the relations 

A=3(+)""I+-)/l+), a,=&- 

a~~Tz+rl$+2_~ 2 -J t’F’ 

The first term in the expression (3.8) coincides with the DBLA [8]. The terms which 
follow give corrections to this approximation, which are connected with the longitudinal 

diffusion. The expression (3.7) shows that the true character of behavior of the flow den- 
sity j (CC) - V%-!i* as z -+ -+- 0 differs from that given by the DBLA (j (X) - 

V%~-‘13). Transition between these two forms of asymptotics occurs in the region 2 - 

y-l’,, i.e. u - 1. 
We conclude by making several general remarks. Without changing the boundary con- 

ditions, we consider the more general equation 

n>z, a>o, v>o (3.9) 

Here, a is a number on the order of unity, and V is a parameter of the problem. Cor- 

responding to Eq. (1. l), for example, we have a = 2, n = 3. In the problem (3.9), 
as in (1. l), there is no length scaling ; changing over to the variables 

we obtain an equation not containing V , 

ayn-2 _t!& 8% a*c 
=d3’2+= (3.10) 

Thus, 
C = e (XV, 7&V), j (X) = v=j (XV‘) (3,lf) 

Assuming that in a neighborh~ of the point of dis~ntin~ty in the boundary condi- 
tions F = ~CZ? + y2 = 0 for any V , the character of the solution of (3.9) is determ- 
ined by the highest derivatives, we obtain the first term in the expansion of a bounded 
solution in a series in powers of r , namely, 

C, = Ar’lz sin (1/z(p) (3.12) 

So far, we have no knowledge of the constant A , 
j (x) the result j (x) - z-l2 

The approximation (3.12) yields for 
1 . Then, taking the relations (3.11) into account, we have 

j (~1 N V’” (xIP)-‘12 (3.13) 

We see then that for n = 3 this expression coincides with the first term of the expan- 

sion (3.7) to within a constant of order unity, Of course, it also follows directly from the 
scaling invariance of the relations (3‘11) that A N Vm12- Discarding the convective 
term is most natural if use of the equation is made in the form (3-10). This indicates 
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the true nature of the approximation (3.12): it is suitable when r = fTl”@ < 1. We 
note that these considerations confirm the assumption (1.X?), which we made earlier in 
connection with the integrable nature of the singularity of j (5) as J: -+ +O. 

For the Eq. (3.9) the DBLA reduces to discarding the term 8C/ dy2. Then C (0, 
y) = 1 and C(W)=I’-‘($)T(~, gy) 

where y (a,, z) is the incomplete gamma-fiction For the flow density the DBLA 

yields the result 
(3.14) 

For the case tt = 3, B = 2 this expression coincides with the first term of the expan- 
sion (3.8). We note that for n = 2 (piston profile) theappmximation(3.14~ hasthe same 
form as the ap~oximat~on (3.13). This explains why the DBLA gives an exact expres- 
sion for the flow density for a piston profile. To see that this is so, it is sufficient to 
equate the expression (3.14) to the expression obtained from equation (2.9) with the 
replacement v--t V. 

The general relationship (3.13) means that, for the boundary conditions chosen, 

i (x> - x-‘~~, fndepandently of the form of the velocity profile (of the choice of n) as 
r -+ + 0 ; and it is only the power to which V enters into this expression that depends 
on the form of the profile. 

It would be interesting to apply the method of matched asymptotic expansions to the 
problem (1. l), (1.2). However, the results given here show that in an arbitrary case we 
cannot join the DBLA with the first term (3.12) of a direct coordinate expansion. We note, 
as 3. A, Ku~~hmidt has shown, that Laplace’s equation has the solution (C- 7;113 sin (s,/scp), 
which matches with the DBLA for z > O,q, - 0. However, this solution gives an incor- 
rect asymptotics j (5) as x -I+ f 0 and does not satisfy the boundary condition dC (x, 
0) / 8i = 0, ST < O.Moreover. the character of the exact answers (3.7) (3.8). in parti- 
cular, the form of the constants appearing in them, compels one to doubt that they could 
be obtained by any simple approximate method. 

The author thanks V. V. Grushin and B. A, Kupershmidt for useful discussions. 
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